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Abstract
Neural Networks (NN), Genetic Algorithms (GA), and
Genetic Programs (GP) are often augmented with
fuzzy logic-based schemes to enhance artificial intelli-
gence of a given system. Such hybrid combinations are
expected to exhibit added intelligence, adaptation, and
learning ability. In this paper, implementation of three
hybrid fuzzy controllers are discussed and verified by
experimental results. These hybrid controllers consist
of a hierarchical NN-fuzzy controller applied to a direct
drive motor, a GA-fuzzy hierarchical controller applied
to a flexible robot link, and a GP-fuzzy behavior-based
controller applied to a mobile robot navigation task.
It is experimentally shown that all three architectures
are capable of significantly improving the system re-
sponse.

I Introduction
Traditional methods which address robotics control
issues rely upon strong mathematical modeling and
analysis. The various approaches proposed to date
are suitable for control of industrial robots and auto-
matic guided vehicles which operate in strzlctzlred  en-
vironments and perform simple repetitive tasks that
require only end-effector positioning or motion along
fixed paths. However, operations in unstructured envi-
ronments require robots to perform more complex tasks
for which analytical models for control can often not be
determined. In cases where models are available, it is
questionable whether or not uncertainty and impreci-
sion are sufficiently accounted for. Under such con-
ditions fuzzy logic control is an attractive alternative
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that can be successfully implemented on real-time com-
plex systems. Fuzzy controllers and their hybridization
with other paradigms are robust in the presence of per-
turbations, easy to design and implement, and efficient
for systems that deal with continuous variables. The
control schemes described in this paper are examples
of approaches that augment fuzzy logic with other soft
computing techniques to achieve the level of intelligence
required of complex robotic systems.

Three soft computing hybrid fuzzy paradigms for
automated learning in robotic systems are briefly de-
scribed and experimentally verified. The first scheme
concentrates on a methodology that uses NNs to adapt
a fuzzy logic controller (FLC) in manipulator control
tasks. The second paradigm develops a two-level hi-
erarchical fuzzy control structure for flexible manip-
ulators. It incorporates GAS in a learning scheme
to adapt to various environmental conditions. The
third paradigm employs GP to evolve rules for fuzzy-
behaviors to be used in mobile robot control. Experi-
mental results of fuzzy controllers learned with the aid
of these soft computing paradigms are presented.

2 Neuro-Fuzzy  S y s t e m
Neural networks exhibit the ability to learn patterns of
static or dynamical systems. In the following neuro-
fuzzy approach, the learning and pattern recognition
of NN are exploited in two stages: first, to learn static
response curves of a given system; and second, to learn
the real-time dynamical changes in a system to serve
as a reference model. The neuro-fuzzy control architec-
ture uses the two neural networks to modify the param-
eters of an adaptive FLC. The adaptive capability of
the fuzzy controller is manifested in a rule generation
mechanism and automatic adjustment of scaling factors
or shapes of membership functions. The NN functions
as a classifier of the system’s temporal responses. A
multi-layer perceptron NN is used to classify the tem-
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Figure 1: Block Diagram of the Adaptive Neuro-Fuzzy
Controller

poral response of the system into different patterns.
Depending on the type of pattern such as ‘Vesponse
with overshoot”, “damped response”, “oscillating re-
sponse” etc. the scaling factor of the input and output
membership functions are adjusted to make the sys-
tem respond in a desired manner. The rule generation
mechanism also utilizes the temporal response of the
system to evaluate new fuzzy rules. The non-redundant
rules are appended to the existing rule base during the
tuning cycles. This controller architecture is used in
real-time to control a direct drive motor. Figure 1 il-
lustrate the architecture of the Neuro-fuzzy controller
where the two NNs  and the fuzzy control architecture
are integrated for adaptive control of nonlinear systems
PI .

2.1 Real-Time Adaptive Control of a
Direct Drive Motor

In order to perform real-time control, it is necessary
that the controller to stand alone with the sole task
of calculating the output needed to control the object
system. This means the task of communicating data
for storing as well as acquiring controller parameters
(if the controller is adaptive) should be performed by
external processors. In this way a real-time control
can be achieved with required sampling rate for high
bandwidth operation.

The FLC algorithm requires processing of several
functionalities such as fuzzification, inferencing and de-
fuzzification. This means the computation time taken
by the FLC itself does not leave any room for an adap-
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Figure 2: Hardware for Implementing Neuro-Fuzzy
Controller for Real-Time Control of a Direct Drive Mo-
tor Using a Digital Signal Processor

tive algorithm such as rule generation, calculating the
scale factor of the membership function, or NN algo-
rithms. In order to implement all these functionalities,
a multi-processing architecture is needed. This can
be achieved by combining a sufficiently fast processor
specifically designed for real-time processing, such as a
TMS320C30  digital signal processor (DSP) combined
with a PC Intel processor (Pentium or 486). Figure
2 shows the hardware built to interface and control a
direct drive motor.

The dynamics of a direct drive brushless DC Mo-
tor exhibits nonlinear characteristics. This is evident
in the dead-zone regions of operation and frequency
load characteristics. A digital to analog converter of
12-bit  resolution is used to interface to the DSP board
through a memory mapped register I/O port. The po-
sition of the motor is measured by an optical encoder
(which generates 8000 pulses per revolution of the mo-
tor). This is converted to digital K&bit position data
by encoder circuitry. The DSP’s  expansion memory is
accessible to the PC with which the data communica-
tion is carried out using direct nternory  access (DMA).
The experimental data as well as fuzzy controller pa-
rameter and communication control data are sent back
and forth using this DMA.

Figure 3(a) shows the result of the experiment. Ini-
tially there are no rules in the fuzzy controller. Hence
for the first two cycles when the motor was commanded
to go from +lOOO  to -1000 encoder readings, there is
no action and the motor is stationary (O-1000 sampling
time; each cycle corresponds to 500 sampled data).
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Figure 3: Position Control Direct Drive Motor: Re-
sponse After (a) First and (b) Final Trial

However, in the third cycle when the motor is com-
manded to go to +lOOO  counts, the motor spins out of
control clockwise. This is because the rule generation
mechanism has produced 4 new rules in the last two
cycles and they are in action. These rules are unsta-
ble because the rules generated are not the right ones
or may be insufficient to control the motor adequately.
This unstable behavior continues until after the 8th
tuning cycle (after 4000 sampling instant). The cor-
responding motor command shows a bounded region.,
Figure 3(b) shows the stabilized response. Here, the
fuzzy controller has completely learned to control the
direct drive motor.

3 GA-Fuzzy Systems for Con-
trol of Flexible Robots

In this section, GAS are applied to fuzzy control of a
single link flexible arm. GAS are guided probabilistic
search routines modeled after the mechanics of Dar-
winian theory of natural evolution [2]. Genetic algo-
rithms have demonstrated the coding ability to repre-
sent parameters of fuzzy knowledge domains such as
fuzzy rule sets and membership functions [3] in a ge-
netic structure, and hence are applicable to optimiza-
tion of fuzzy rule-sets.

Several issues should be addressed when design-
ing a GA for optimizing fuzzy controllers: the de-
sign of a transformation (interpretation) function, the
method of incorporating initial expert knowledge, and
the choice of an appropriate fitness function. Each of
the above issues significantly influences the success of
GA in finding improved solutions. These issues are
briefly discussed below as they apply to design of a
GA-fuzzy controller for a flexible link.

3.1 Application to Flexible Robot Con-
trol

A Distributed Parameter System

Figure 4: GA-Based Learning Hierarchical Control Ar-
chitecture
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Figure 5: GA Simulation (a) Comparison of Simula-
tion Responses (b) Plot of Average Fitness (c) Initial
Experimental Results

The GA-learning hierarchical fuzzy control architecture
is shown in Figure 4. Within the hierarchical con-
trol architecture, the higher level module serves as a
fuzzy classifier by determining spatial features of the
arm such as straight, oscillatory, curved. This informa-
tion is supplied to the lower level of hierarchy where it
is processed among other sensory information such as
errors in position and velocity for the purpose of deter-
mining a desirable control input (torque). In [5] this
control system is simulated using only a priori expert
knowledge. In the given structure, a genetic algorithm
fine tunes parameters of membership functions.

The following fitness function was used to evaluate
individuals within a population of potential solutions,

tf

fti J 1
ness = dt

t; e2+r2+1  ’

where e represents the error in angular position and y
represents overshoot. Consequently, a fitter individual
is an individual with a lower overshoot and a lower
overall error (shorter rise time) in its time response.

Here, results from previous simulations of the ar-
chitecture are applied experimentally. The method of
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grtd-parenting  [6] was used to create the initial popu-
lation. Members of the initial population are made up
of mutation of the knowledgeable grandparent(sb.  As a
result, a higher fit initial population results in a faster
rate of convergence as is exhibited in Figure 5(a). Fig-
ure 5(a) shows the time response of the GA-optimized
controller when compared to previously obtained re-
sults through the non-GA fuzzy controller. The rise
time is improved by 0.34 seconds (an 11% improve-
ment), and the overshoot is reduced by 0.07 radians (
a 54% improvement). The average fitness of each gener-
ation is shown in Figure 5(b). A total of 10 generations
were simulated. Mutation rate for creating the initial
population was set at 0.1. Mutation rate throughout
the rest of the simulation was set to 0.01. Probability
of crossover was set to 0.6. Initial experimental results
demonstrate that the GA learned controller is able to
control the actual experimental system as in Figure
5( >c .

The hardware used to implement the above algo-
rithms is the same as was explained in the previous
section with few modifications pertaining to flexible
robot control such as tip end position sensor and sev-
eral strain gauges distributed evenly across the length
of the flexible beam.

4 GP-Fuzzy Hierarchical Be-
havior Control

The robot control benefits to be gained from soft
computing-based hybrid FLCs  is not limited to rigid
and flexible manipulators. Similar benefits can be
gained in applications to control of mobile robot be-
havior. Autonomous navigation behavior in mobile
robots can be decomposed into a finite number of
special-purpose task-achieving behaviors. An effective
arrangement of behaviors as a hierarchical network of
distributed fuzzy rule-bases was recently proposed for
autonomous navigation in unstructured environments
[8]. The proposed approach represents a hybrid control
scheme incorporating fuzzy logic theory into the frame-
work of behavior-based control. A behavior hierarchy
that encompasses some necessary capabilities for au-
tonomous navigation in indoor environments is shown
in Figure 6. It implies that goal-directed navigation can
be decomposed as a behavioral function of goal-seeking
and route following. These behaviors can be further
decomposed into the lower-level behaviors shown, with
dependencies indicated by the adjoining lines. Each
block in Figure 6 is a set of fuzzy logic rules. The circles
in the figure represent dynamically adjustable weights
in the unit interval which specify the degree to which

Figure 6: Hierarchical decomposition of mobile robot
behavior.

low-level behaviors can influence control of the robot’s
actuators. Higher-level behaviors consist of fuzzy de-
cision rules which specify these weights according to
goal and sensory information. Each low-level behavior
consists of fuzzy control rules which prescribe motor
control inputs that serve to achieve the behavior’s des-
ignated task.

The functionality of this hierarchical fuzzy-behavior
control approach depends on a combined effect of the
behavioral functionality of each low-level behavior and
the competence of the higher-level behaviors which co-
ordinate them. Perhaps the most difficult aspect of
applying the approach is the formulation of fuzzy rules
for the higher level behaviors. This is not entirely in-
tuitive, and expert knowledge on concurrent coordi-
nation of fuzzy-behaviors is not readily available. We
have successfully addressed this issue in [9] using GP to
computationally evolve rules for composite behaviors.
In this section, we describe the genetic programming
approach to fuzzy rule-base learning. Next, we present
a representative experimental result of applying the be-
havior hierarchy’ to autonomous goal-seeking.

4.1 GP-Fuzzy approach

The GP paradigm [lo] computationally simulates the
Darwinian evolution process by applying fitness-based
selection and genetic operators to a population of in-
dividuals. Each individual represents a computer pro-
gram of a given programming language, and is a can-
didate solution to a particular problem. The programs
are structured as hierarchical compositions of functions
(in a set F) and terminals (function arguments in a
set T). The population of programs evolves over time
in response to selective pressure induced by the rela-
tive fitnesses of the programs for solving the problem.
For the purpose of evolving fuzzy rule-bases, the search
space is contained in the set of all possible rule-bases
that can be composed recursively from F and T. The
set, F, consists of components of the generic if-then
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rule and common fuzzy logic connectives, i.e. func-
tions for antecedents, consequents,  fuzzy intersection,
rule inference, and fuzzy union [9]. The set, T, is made
up of the input and output linguistic variables and the
corresponding membership functions associated with
the problem. A rule-base that could potentially evolve
from F and T can be expressed as a tree data struc-
ture with symbolic elements of F occupying internal
nodes, and symbolic elements of T as leaf nodes of the
tree. This tree structure of symbolic elements is the
main feature which distinguishes GP from GAS which
use the numerical string representation.

All rule-bases in the initial population are randomly
created, but descendant populations are created pri-
marily by reproduction and crossover operations on
rule-base tree structures. For the reproduction oper-
ation several rule-bases selected based on superior fit-
ness are copied from the current population into the
next, i.e. the new generation. The crossover operation
starts with two parental rule-bases and produces two
offspring that are added to the new generation. The op-
eration begins by independently selecting one random
node (using uniform probability distribution) from each
parent as the respective crossover point. The subtrees
subtended from crossover nodes are then swapped be-
tween the parents to produce the two offspring. GP
cycles through the current population performing fit-
ness evaluation and application of genetic operators to
create a new population. The cycle repeats on a gen-
eration by generation basis until satisfaction of termi-
nation criteria (e.g. lack of improvement, maximum
generation reached, etc). The GP result is the best-fit
rule-base that appeared in any generation.

In the GP approach to evolution of fuzzy rule-bases,
the same fuzzy linguistic terms and operators that com-
prise the genes and chromosome persist in the pheno-
type. Thus, the use of GP allows direct manipulation
of the actual linguistic rule representation of fuzzy rule-
based systems. Furthermore, the dynamic variability of
the representation allows for rule-bases of various sizes
and different numbers of rules. This enhances popula-
tion diversity which is important for the success of the
GP system, and any evolutionary algorithm for that
matter. The dynamic variability also increases the po-
tential for discovering rule-bases of smaller sizes than
necessary for completeness, but sufficient for realizing
desired behavior.

4.2 Real-time navigation

GP was used to evolve fuzzy decision rules to be used
for goal-seeking by a mobile robot. Population sizes
of lo-20  rule-bases were run for a number of gener-
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ations  ranging from 10-15. In GP, genetic diversity
remains high even for very small populations due to
the tree structure of individuals [lo]. The experimen-
tal testbed  is a custom-built mobile robot driven by
a two-wheel differential configuration with two passive
casters for support. The independent drive motors are
geared DC motors. The robot stands about 75 cm tall
and measures about 60 cm in width. Range sensing
is achieved using a layout of 16 ultrasonic transduc-
ers; optical encoders on each driven wheel provide po-
sition information used for dead-reckoning. Its maxi-
mum speed was limited to 0.3m/s. The vehicle is con-
trolled using a 75MHz Pentium-based master processor
(laptop PC) and M otorola MC68HCll  microprocessor
slaves for sonar processing and low-level motor control
functions. In the current implementation, the cycle
time of the control system is 0.15 seconds (7Hz).  This
includes time spent acquiring and preprocessing sonar
and encoder data, and commanding the motors. The
overall inference of the behavior hierarchy consumes
about 0.05  seconds of this time. That is, the hierarchy
itself can run at a rate of 20Hz.

During operation, the robot is not provided with an
explicit map of the environment. However, it is cog-
nizant of the notion of a two-dimensional Cartesian co-
ordinate system. Its paths are not pre-planned; they
are executed in response to instantaneous sensory feed-
back from the environment. Therefore, we are essen-
tially dealing with a local navigation problem as op-
posed to a global navigation problem which relies on
a global map that is either provided a priori, or is ac-
quired via exploration. The experiment was conducted
in an indoor environment consisting of corridors and
doors. The robot’s task is to navigate from one location
to another on the same floor of the building. The result
of the navigation task is shown in Figure 7 as the path
traveled in a portion of the indoor test environment
which includes the start and commanded goal. The
robot is displayed as an octagonal icon with a radial line
indicating its heading. It was commanded to navigate
from a start pose, (Z y S>T = (9.5m  22m 3.Onzd)*  to a
goal located at (21.5m,  37.5m).  As shown in Figure 7,
the robot successfully navigates in close proximity to
the goal without prior map-based information. The
fuzzy-behavior based motion control relied primarily on
sonar and dead-reckoning information, both of which
are known to be sources of uncertainty in mobile robot
navigation. Throughout the navigation task, the fuzzy-
behavior hierarchy continuously modulates the weights
of low-level behaviors in order to appropriately coordi-
nate their concurrent activity.

The hierarchy of fuzzy-behaviors provides an efficient
approach to synthesis of behavioral capabilities neces-
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Figure 7: Goal-seeking navigat ion using fuzzy-
behaviors.

sary for autonomous navigation by mobile robots. This
hybrid control scheme incorporates fuzzy logic into the
a behavior-based control framework for which coordi-
nation rules can be discovered using GP. For the pur-
pose of evolving fuzzy rule-bases, GP has certain ad-
vantages. Namely, it facilitates manipulation of the lin-
guistic variables directly associated with the problem,
and it allows for populations of rule-bases of various
sizes. The navigation result demonstrates robustness
of the fuzzy-behavior hierarchy to uncertainty in real
world sensor-based control of mobile robots. In ad-
dition, the result shows that the approach is useful in
situations where maps are not available, or are perhaps
unreliable.

5 Conclusion
In this paper, three experiments illustrate the utility of
soft-computing approaches in handling complex mod-
els and unstructured environments. Neuro-fuzzy, GA-
fuzzy, and GP-fuzzy hybrid paradigms are successfully
implemented to solve three prominent robot control is-
sues, namely: control of direct drive robot motors, con-
trol of flexible links, and intelligent navigation of mo-
bile robots. In the future, as these paradigms mature,
we will gain more knowledge of their exact nature and
advantages. This will allow us to combine soft comput-
ing paradigms for more intelligent and robust control.
Not long ago, a hybrid combination of these paradigms
could not be applied to a real-time system. However,
as shown in this paper, with the current advances in
increase of speed of processing and DSP parallel pro-
cessors, various combination of hybrid soft computing
paradigms are now realizable.
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